Comparison Classification Of Tomatoes Ripeness Based On RGB, HSV And CMYK Colors Based On Correlation Coefficient
DOI:
https://doi.org/10.56427/jcbd.v3i3.410
Kata Kunci:
CMYK, RGB, HSV, Coefficient of correlation, Color Space, ClassificationAbstrak
This article discusses the classification of tomato fruit maturity based on color space. Several studies have been conducted to measure maturity levels using RGB and HSV color spaces. In this article, researchers classify the ripeness of tomatoes using the CMYK color space, which researchers have never done before. Next, the classification results of the CMYK color space are compared with the RGB and HSV color spaces. The CMYK color space is a secondary color commonly seen by the human eye. CMYK colors are colors produced from a combination of RGB colors. Comparison of classification results based on CMYK, RGB, and HSV color spaces was carried out using the correlation coefficient and mean square error (MSE). The correlation coefficient is a method that is often used to measure the similarity between 2 images, where the closer to 0 the correlation value, the better
Unduhan
Referensi
R. Novaldy, R. N. Iyos, The Effect of Tomato (Solanum lycopersicum) in Prostate Carcinoma Risk Reduction. Majority Journal: Medical Journal Of Lampung University, 2022, p. 150-154
S. F. Sholeha, D. W. Soedibyo, Sutarsi. Assessment of Physical and Chemical Properties of Tomato (Lycopersium escuslentum Mill) Using Image Processing. Berkala Ilmiah Pertanian, 2018, p.1-6
M. T. Suwindra, Ernawati, Elansari, A. Bird Species Similarity Analysis Using Siamese Neural Network Analysis Of Bird Species Similarity Using Siamese Neural Network. Rekursif Journal, 2021, 9(2), p. 193-205.
Munir,. Digital Image Processing with an Algorithmic Approach. 2014, Bandung Informatika.
J. Jumadi, Yupianti, D. Sartika, Digital Image Processing for Object Identification Using Hierarchical Agglomerative Clustering Method. JST Journal, 2021. 10(2), 148-156.
K.A. Santoso, Fatmawati., Suprajitno. On Max-Plus Algebra and Its Application on Image Steganography. Scientific World Journal, 2018, 1087-1096.
Khotimah, H. N. Nafi’iyah, Masruroh. Classification of Mango Fruit Maturity Based on HSV Image with KNN. ELTI Journal, 2019, 1(2), p. 1-14.
B. Marhaenanto, D. W. Soedibyo, M. Farid, Determination of Coffee Roasting Time Based on Variation of Roasting Degree Using RGB Color Model in Digital Image Processing. Agroteknologi Journal, 2019, 9(2), p. 102-111.
N. K. Ningrum, T. E. Sasmita. Color Extraction Based on RGB to Determine the Maturity Level of Tobacco Leaves. Proceeding of SNATIF, 2018, 44(5), p. 373-378.
F. Liantoni, F. N. Annisa, Fuzzy K-Nearest Neighbor for Chili Maturity Classification Based on HSV Image Features. Journal of JIPI, 2018. 3(2), p. 101-108.
Fauzi, J. F., Tolle, H., and Dewi., R. K. Implementation of RGB To HSV Method on Android-Based Paper Currency Recognition Application for the Visually Impaired. Journal of J-PTIIK, 2018, 2(6), p. 2319-2325.
K. A. Santoso, R. A. Sukmawati, A. Pradjaningsih, Image security development using 3D playfair cipher combination and bit shift. AIP Conference Proceeding, (2022). 020013.
R. Rahmadewi, G. L. Sari, and H. Firmansyah, Citrus Fruit Maturity Detection with Fruit Peel Image Features Using HSV Color Space Transformation. JTEV Journal, 2019, 5(11), p. 166-171.
Pratt, and K. WilliamDigital Image Processing. New York: John Wiley & Sons, Inc.
Paiman. (2019). Correlation And Regression Analysis Techniques In Agricultural Sciences. 2001, Yogyakarta: UPY Press.
M. Zen, Comparison of Fractal Dimension Method and Backpropagation Artificial Neural Network in Fingerprint Identification System on Digital Image. JITEKH Journal, 2019, 7(2), p. 42-50.
M. I. Mulyadi, R. R. Isnanto, A. Hidayatno. Fractal Dimension Based Feature Extraction. TRANSIENT Journal, 2013, 2(3), 751-756
K. A. Santoso, M. L. Najah, Moh. Hasan, Image Authentication Based on Magic Square. Advances in Computer Science Research. 2022, https://doi.org/10.2991/acsr.k.220202.043
N. A. Juwitarty, K. D. Purnomo, K. A. Santoso, Detection Of Plant Leaf Images Using The Box Counting Method. Majalah Ilmiah Matematika Dan Statistika, 2020, 20(1), p. 35-41
Mundir. Educational Statistics Introduction to Data Analysis for Thesis and Thesis Writing. Jember: STAIN Jember Press. (2012).
I. W. Kusuma, R. L. Ellyana, Application of Compressed Image to Image Segmentation Using K-Means Alhorithm. JUTEI Journal, 2018, 2(1), p. 65-74.
M. L. Firdaus, Okumura, R. M. Nursaadah, E. Handayani, D. Mayub, A. Rahmidar, L. Permana, M. D., Luthfiah, A. Wyantuti, SColorimetric Sensing of Ascorbic Acid Using Cu-Phen MOFs and Subsequent Digital Image Analysis with Smartphone. Science and Technology Indonesia, ., 2023, 8(4), p. 660–665.
D. Kurniasari, W. Warsono, M. Usman, F. R. Lumbanraja, LSTM-CNN Hybrid Model Performance Improvement with BioWordVec for Biomedical Report Big Data Classification. Science and Technology Indonesia, 2024, 9(2), p. 273–283.
K. A. Santoso, A. Kamsyakawuni, M. Seggaf, Medical Image Encryption Using Dna Encoding And Modified Circular Shift. BAREKENG: Jurnal Ilmu Matematika Dan Terapan, 2022, 16(1), p. 235–242.
S. Nabila, A. Srihardyastutie, S. Prasetyawan, A. Aulanni’am, R. Retnowati, The Addition of Red Dragon Fruit and Lemon Peels for the Improvement of Fermented Beverage Products. Science and Technology Indonesia, 2023. 8(1), p.100–107.
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2024 Kiswara Agung Santoso, Ahmad Kamsyakawuni, Siti Virna Rohmatul Izza
Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.