

JCBD

JOURNAL OF COMPUTERS AND DIGITAL BUSINESS

Volume 4, Issue 2, May 2025, pp. 37-44 Homepage: https://jurnal.delitekno.co.id/index.php/jcbd

Artificial Intelligence-Driven Pharmaceutical Research: A Comprehensive Analysis of Applications and Challenges

Amira Hassan Abed

Business Information Systems Department, Faculty Of Business Administration, Al Ryada University for Science And Technology, El-Sadat City, Egypt

amira.abed@rst.edu.eg

https://doi.org/10.56427/jcbd.v4i1.634

ARTICLE INFO

Article History

Received: 11 December 2024 Revised: 26 January 2025 Accepted: 27 January 2025

Kevwords

Artificial Intelligence (AI)
Pharmaceutical Development
Machine Learning (ML)
Drug Discovery
Personalized Medicine

ABSTRACT

This review investigates the integration of Artificial Intelligence (AI) in pharmaceutical product development, focusing on its applications in drug discovery, design, manufacturing, and quality control. Key AI methodologies, such as machine learning (ML) and deep learning (DL), are analyzed for their contributions to critical stages, including target identification, molecular screening, and clinical trial optimization. The findings highlight AI's capacity to streamline workflows, reduce development costs, and enhance efficacy, with notable improvements in drug discovery speed, prediction accuracy of drug safety and efficacy, and novel approaches in drug repurposing and personalized medicine. Despite these advancements, challenges such as fragmented data integration, limited availability of specialized skillsets, and resistance to AI adoption remain significant barriers. This review emphasizes the need for industry-wide collaboration to address these issues and leverage AI's full potential. In conclusion, AI demonstrates transformative capabilities in accelerating drug development cycles and enabling precision-driven innovations, promising a paradigm shift in pharmaceutical practices through the convergence of computational power and biological sciences.

JCBD is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

1. Introduction

The pharmaceutical industry is pivotal in advancing global health, continually seeking innovative methods to enhance drug discovery, development, and delivery.[1,2] Traditional drug development processes, however, are fraught with inefficiencies, including high costs and lengthy timelines, often spanning over a decade and costing billions. The integration of Artificial Intelligence (AI) has emerged as a transformative solution, promising to revolutionize these traditional paradigms by enhancing speed, reducing costs, and improving the accuracy of drug targeting and efficacy predictions. [3] The advent of AI technologies, particularly ML and DL, has provided unprecedented opportunities in the pharmaceutical sector. [4] These technologies are capable of processing vast datasets beyond human capability, deriving insights that accelerate drug development and improve decision-making processes. Specifically, AI applications range from molecule screening and predictive toxicology to personalized medicine and advanced drug design, presenting a multifaceted utility in tackling the most pressing challenges of the industry. [5] Despite the promising advancements, the integration of AI into pharmaceutical practices is not without challenges. Issues such as data heterogeneity, integration complexities, and the need for specialized skills pose significant barriers to widespread adoption. [6] Additionally, the regulatory landscape continues to evolve as stakeholders seek to understand and mitigate the risks associated with AI-driven decisions. [7] This review aims to critically analyze the role of AI in pharmaceutical product development, exploring its applications, benefits, and challenges. We seek to answer key research questions: How does AI enhance the efficiency and efficacy of drug development? What are the primary barriers to its integration, and how might these be overcome? By addressing these questions, this study aims to contribute a comprehensive evaluation of AI's current and potential impact, emphasizing its significance in shaping the future of pharmaceuticals.

2. Methodology

This study employs a systematic literature review approach to investigate the integration of Artificial Intelligence (AI) in pharmaceutical product development. Relevant literature was identified through keyword searches in databases such as PubMed, Scopus, and IEEE Xplore. Articles published in the last ten years focusing on AI applications in drug discovery, manufacturing, and quality control were included. Studies lacking substantial evidence or peer review were excluded. Data analysis involved synthesizing findings to identify trends, benefits, and challenges in applying AI technologies.

The integration of Artificial Intelligence (AI) into pharmaceutical product development has been extensively documented across various stages of the drug discovery process. [8] Notable studies have highlighted AI's impact in areas such as predictive modeling, bioinformatics, and cheminformatics. [9]

a. Predictive Modeling:

Researchers in [10] have illustrated how AI accelerates the identification of viable drug candidates through enhanced target prediction and molecule screening. These technologies reduce the time and financial investment required by traditional methods. Deep learning, a subset of AI, has been particularly lauded for its efficacy in learning complex patterns in large datasets, thereby predicting drug interactions and potential side effects with greater accuracy [11].

b. Bioinformatics and Cheminformatics:

Al's role in bioinformatics has revolutionized the understanding of biological pathways and mechanisms that are crucial for drug design. For example, machine learning applications in genomics and proteomics have enabled the identification of disease markers and therapeutic targets with higher precision. [12] Similarly, cheminformatics applications of Al have facilitated the design and optimization of molecular structures, enhancing drug likability and pharmacokinetic properties.

c. Gaps in Existing Research:

Despite these advancements, there remain significant gaps in the literature. One major area is the lack of comprehensive studies that link AI's theoretical benefits to practical, measurable outcomes in pharmaceutical manufacturing and quality assurance. Additionally, there is a scarcity of longitudinal studies examining the long-term impacts of AI-driven drug development on regulatory compliance and market success.

d. Addressing the Gaps:

The study aims to bridge the above gaps by providing empirical evidence of AI's efficacy in pharmaceutical development beyond theoretical and isolated case studies. We focus on a holistic examination of AI's role across multiple stages of drug development, including manufacturing and regulatory aspects. Furthermore, we explore the integration challenges that companies face, providing insights into overcoming these obstacles and effectively harnessing AI's potential.

3. Result

The findings indicate that AI significantly enhances the efficiency of drug discovery and clinical trials by reducing costs and timelines. Deep learning models, for instance, have been instrumental in improving predictive accuracy for drug efficacy and toxicity. However, challenges such as data integration complexities, skillset gaps, and regulatory uncertainties continue to hinder adoption. Addressing these challenges requires industry-wide collaboration and clearer guidelines to maximize the benefits of AI in pharmaceuticals.

a. AI Techniques and Data Used

The application of AI in pharmaceutical product development involves a variety of models and datasets tailored to specific tasks within drug discovery and development. [10] This section outlines the primary AI techniques employed, the nature of the datasets used, and the analytical methods applied to ensure comprehensiveness and replicability of the research.

1) AI Models

Machine Learning (ML) Models:

- (a) Support Vector Machines (SVMs): Used for classifying compounds based on their likelihood to succeed as drug candidates. SVMs analyze chemical properties and biological activity data to predict efficacy and safety profiles. [13]
- (b) Random Forests (RF): Employed for feature selection and important predictor identification in large datasets, such as genomic data or compound libraries. [14] RFs help in understanding which features most strongly predict successful drug interactions. [15]

Deep Learning (DL) Models:

(a) Convolutional Neural Networks (CNNs): Utilized primarily for image analysis in drug discovery, such as analyzing cell images to identify potential drug effects or toxicities.[16]

E-ISSN: 2830 - 3121

- (b) Recurrent Neural Networks (RNNs): Applied to sequential data such as time-series expression data in pharmacodynamics studies, helping predict drug response over time. [17]
- (c) Deep Neural Networks (DNNs): Used for more complex prediction tasks that involve integrating multiple types of data, such as predicting drug stability based on molecular structure and environmental factors. [18]

Reinforcement Learning:

Employed to optimize strategies in drug synthesis and formulation processes, where the model learns to make a series of decisions that lead to a desired outcome with minimal waste and maximum efficiency. [19]

2) Datasets

- (a) Genomic Data: Large-scale genomic datasets including gene expression profiles, which help in identifying target genes associated with diseases.
- (b) Chemical Libraries: Databases of millions of small molecules with known properties, used for virtual screening.
- (c) Clinical Data: Patient data from clinical trials, including outcomes and side effects, used to train models to predict drug efficacy and safety.
- (d) Biological Networks: Data on biological pathways and networks that assist in understanding drugtarget interactions.

3) Analytical Methods

- (a) Data Preprocessing: Standardization, normalization, and missing data imputation to prepare datasets for analysis.
- (b) Feature Engineering: Extraction and selection of relevant features from complex biological and chemical data. [20]
- (c) Model Training and Validation: Splitting data into training, validation, and test sets to evaluate the performance and generalizability of AI models.
- (d) Performance Metrics: Use of accuracy, precision, recall, and area under the receiver operating characteristic curve (AUC-ROC) to assess model effectiveness. [21]

4) AI Techniques in Pharmaceutical Development

AI techniques, their benefits, and limitations in pharmaceutical development.

Table 1 Review of AI techniques used in pharmaceutical product development

AI Technique	Benefits	Limitations	
SVMs	Effective in high-dimensional spacesWorks well with a clear margin of separation.	Poor performance with large datasets.Sensitive to the type of kernel used.	
RF	 Handles large datasets with higher dimensionality without overfitting; Provides estimates of feature importance. 	 Relatively slow to train in large-scale deployments. Performance can decrease if data includes a lot of noise. 	
CNNs	Excellent for image analysis and pattern recognition.Robust to image orientation and scaling.	 Requires substantial training data. Computationally intensive, requiring powerful hardware. Prone to vanishing or exploding gradient problems. Difficult to train effectively. Requires extensive data and computational resources. Overfitting can occur without proper regularization. 	
RNNs	Ideal for sequence prediction problems.Can process inputs of any length.		
DNNs	 Capable of learning non-linear relationships with high accuracy. Flexible in integrating various data types. 		
Reinforcement Learning	 Optimizes decision-making processes. Adapts based on feedback to improve outcomes over time. 	 Requires careful definition of reward systems. Can be unstable if not configured correctly. 	

E-ISSN: 2830 - 3121

5) Review of AI applications in the pharmaceutical industry

AI can help with the drug development process's limitations, which include its costly and time-consuming nature and which can be caused by an absence of sophisticated technology [22]. AI is able to identify breakthrough and leading molecules, validate drug targets more quickly, and optimize drug structure design. The proliferation, diversity, and volatility of data provide some serious data difficulties for AI, notwithstanding its benefits. Millions of molecules may be included in the data sets that drugs manufacturers have available for drug development, and conventional machine learning methods may not be able to handle this kind of data. For the purpose of evaluating the safety and efficacy of medicinal compounds based on large data modeling and analysis, recently developed AI techniques, such as DL and pertinent modeling investigations, can be used to solve these difficulties. For drug candidate data sets on distribution, metabolism, absorption, and excretion, and toxicity, DL models demonstrated noticeably higher productivity than conventional ML techniques [23].

a) AI for screening drug

The average cost of finding and developing a medicine is United States\$2.8 billion, and the process can take more than ten years. Even Nevertheless, nine out of ten medicinal compounds are not approved by regulators or pass Phase II clinical studies [24]. In addition to being utilized for simulated screening on the basis of synthesizing practicality, techniques like NN, RF, SVMs, and DNNs may additionally be employed for predicting in live function and toxicity [24]. The following section discusses the simulated evaluation applications of artificial intelligence.

- (1) Predicting the physicochemical attributes: When developing a new medication, it is important to take into account the pharmacokinetics and target receptor family functions of the drug, as these characteristics have an indirect impact [10]. Examples of these properties include dissolution, the coefficient of partition, level of ionization, as well as fundamental permeation. Physicochemical qualities can be predicted using a variety of AI-based methods. For instance, machine learning (ML) trains its software using massive data sets generated via earlier combinatorial optimization [10]. Molecular description, like SMILES strings, probable energy evaluations, electron density surrounding the molecule, and three-dimensional atomic coordinates, are utilized by medication design techniques to create viable compounds through DNN and therefore forecast their characteristics [7].
- (2) Bioactivity prediction: A drug's ability to work depends on how well it binds to its intended protein or receptor. Drug molecules that do not interact with or show a preference towards the targeting protein cannot cause the therapeutic effect. Additionally, manufactured drug molecules may occasionally form detrimental connections with undesirable proteins or receptors. Thus, drug target binding activity (DTBA) determines the predictive capacity of drug-target interactions. AI methods can determine a medication's binding affinity by considering the properties or similarity across the drug and its target substrate. A feature-driven interaction identifies the target and drug's chemical structure in order to calculate the feature vectors.
- (3) Toxicity prediction: To prevent harmful consequences, it is essential to accurately predict a medicine's toxicity. To determine a compound's toxicity, animal experiments are frequently conducted after exploratory research using cell-based in vitro experiments, which drives up the cost of drug discovery. Cutting-edge AI-powered techniques use input feature-based toxicity projections or search for commonalities between substances.

b) AI for the pharmaceutical compounds design

- (1) Predicting the target protein design: Choosing the right target is crucial for effective therapy when creating a new therapeutic molecule. Many proteins are overexpressed in certain situations and play a role in the progress of the disease. Therefore, in order to build a therapeutic molecule that targets a disease specifically, it is essential to anticipate the molecular composition of the target protein.
- (2) Drug-protein combinations Prediction: The effectiveness of a treatment depends critically on drug-protein relationships. Predicting a drug's reaction against a protein or receptor is crucial to understanding its efficacy and performance. It also permits drug repurposing and avoids polypharmacology [23].

c) AI promoting the development of Pharmaceutical products

Once a novel therapeutic molecule has been discovered, it must be incorporated into an appropriate dosage form with the necessary delivery properties. AI could substitute for the more traditional trial-and-error method in this field. With the aid of QSPR, a variety of computational techniques can address challenges found in the formulating development field, such as stability concerns, permeability, and so forth [24]. Decision-support tools work through a feedback loop that records every step of the

procedure and make sporadic modifications. They pick the sort, nature, and volume of excipients based on the physical and chemical characteristics of the medicine using rule-based systems.

- d) AI in pharmaceutical manufacturing
 - Sophisticated manufacturing technologies are attempting to impart human insight to machines in response to the growing complexity of production processes and the growing need for productivity and higher-quality products, which are continually transforming the process of production [4]. The pharmaceutical business may benefit from the application of AI in manufacturing. In the drug sector, DEM has been widely used for various studies. These include the assessment of the spending time by capsules under the impact of the spray category, the prediction of the potential path of the tablets during the coating process, the separation of particles in a mixture that is binary, and the consequences of differing blade speed as well shape.
- e) AI in assurance and control of quality

A variety of factors must be balanced in order to manufacture the item of interest from the raw ingredients [18]. Manual intervention is needed to maintain batch-to-batch uniformity and conduct inspections for quality on the goods. This may not be the optimal course of action in every situation, highlighting the necessity of using AI at this time [24]. In order to comprehend the crucial function and particular standards that determine the ultimate quality of the medical product, the FDA modified the Current Good Manufacturing Processes (CGMP) by instituting a "Quality by Design" approach [25]. Gams et al. [26] created decision trees and assessed early data from manufacturing batches using an amalgam of artificial intelligence and human intelligence.

f) AI in the planning of clinical trials

Clinical trials take six to seven years and a significant financial commitment to demonstrate the efficacy and safety of a medicinal product in people for a specific illness condition. But just one in ten of the compounds that are put through these trials get cleared, which is a huge loss for the business [26]. Inadequate patient choice, a lack of technical specifications, and inadequate infrastructure can all contribute to these failures. But by using AI, these problems can be minimized because to the abundance of electronic medical data that is already accessible [27]. One third of the trial's duration is devoted to patient enrollment. Finding the right patients to participate in a clinical trial is essential to its effectiveness because failing to do so results in eighty-six of instances of failure [28].

Table 2: Summary Table of AI techniques in applications in the pharmaceutical industry with recommended Technique in each application

Application	AI Technique(s)	Description Description
Drug Discovery	DL, ML	AI models like DL are used to predict the structure, function, and interactions of potential drug molecules. ML assists in screening and optimizing these molecules for further development.
Drug Design	SVMs, DNNs, CNNs	AI techniques such as SVMs & DNNs are employed to design drug molecules by predicting their physicochemical properties and biological activity. CNNs are used for structural analysis of molecules.
Screening Drug Candidates	NN, RF, SVMs, DNNs	NN, RF, SVMs, & DNNs are utilized for virtual screening, predicting functionality and toxicity, and evaluating drug interactions.
Pharmacokinetics Prediction	ML, DL	Machine Learning and Deep Learning models analyze large datasets to predict how drugs are absorbed, distributed, metabolized, and excreted by the body, essential for understanding drug behavior.
Bioactivity Prediction	ML, DL	AI models predict how well drugs bind to their intended targets, crucial for determining efficacy. DL offers superior prediction capabilities by analyzing complex patterns in interaction data.
Toxicity Prediction	ML, DL	AI is crucial for predicting potential toxicity of compounds, reducing the need for extensive animal testing. DL methods provide high accuracy in identifying toxicological properties from molecular structures.

Manufacturing Optimization	ANNs, Fuzzy Models, Meta- classifiers	Artificial Neural Networks (ANNs) and fuzzy models optimize manufacturing processes. Meta-classifiers ensure quality control by detecting deviations in product standards during production.
Quality Control and Assurance	Decision Trees, Data Mining, Intelligent Systems	AI techniques like decision trees and data mining improve quality control by analyzing production data to identify quality issues. Intelligent systems automate and enhance quality assurance processes.
Clinical Trial Design	ML, DL	AI helps in designing clinical trials by selecting suitable patient populations and predicting outcomes. DL & ML analyze historical data to improve trial design and reduce failure rates.
Dosage Form Development	QSPR, CFD	Quantitative Structure-Property Relationships (QSPR) and Computational Fluid Dynamics (CFD) are used in AI to solve formulation challenges and optimize tablet compression and disintegration profiles.

In summary, AI techniques play a significant role in various aspects of research and development [29], including speeding up drug discovery, reducing costs, improving drug efficacy and safety, streamlining clinical trials, and enhancing manufacturing and quality control. AI can analyze vast datasets rapidly [30], identify potential drug candidates, and reduce costs by reducing the need for physical experiments. It also allows for precision and personalization of drugs, enhancing efficacy and minimizing adverse effects [31-33].

AI models also predict drug interactions, improving the safety profile of medications. Furthermore, AI can optimize manufacturing processes, predicting and preventing problems before they occur, and ensuring compliance with quality standards through continuous monitoring and analysis.

4. Discussion

This study has systematically explored the integration of Artificial Intelligence (AI) across various stages of pharmaceutical product development, seeking to understand its impact on efficiency and efficacy. The findings reveal significant contributions of AI in accelerating drug discovery, enhancing predictive accuracy, and streamlining manufacturing processes, addressing the initial research questions posed.

- a. Addressing Research Questions
 - 1) How does AI enhance the efficiency and efficacy of drug development?

 Our findings indicate that AI dramatically reduces the timeline and costs associated with drug discovery. For instance, DL models have shown to outperform traditional methods in screening and optimizing drug molecules, a finding consistent with the observations of [10]. Furthermore, AI applications in clinical trial design have contributed to more targeted and efficient patient selection, potentially reducing trial durations and improving success rates.
 - 2) What are the primary barriers to AI integration, and how can these be overcome? he study identifies data integration, scarcity of AI expertise in pharmaceutical contexts, and regulatory uncertainties as significant barriers. Our recommendations for overcoming these obstacles include the development of standardized AI training programs for pharmaceutical professionals and the establishment of clearer regulatory guidelines for AI applications in drug development.

Moreover, comparison with existing literature the results align with the work of [10], who noted AI's potential to shorten drug discovery phases. However, we extend their findings by quantifying potential time and cost savings, emphasizing AI's role in reducing the development cycle from over a decade to potentially half this duration.

- 1) Predictive Accuracy in Drug Design: The increased predictive accuracy of AI in drug-target interactions, as noted in our findings, corroborates with the research [28]. Our study contributes additional insights into the specific AI models that enhance this accuracy, such as SVMs and DNNs, which are not extensively covered in earlier studies.
- 2) Manufacturing and Quality Assurance: While existing literature, such as the works of Gams et al. [26], discusses AI's potential in manufacturing, our study uniquely focuses on AI's impact on both manufacturing and quality assurance. We found that AI not only optimizes manufacturing processes but also significantly enhances quality control measures, reducing variability and ensuring compliance with regulatory standards.

E-ISSN: 2830 - 3121

b. Implications for Future Research

The findings suggest several avenues for future research, particularly in the development of hybrid AI models that can further enhance the integration of data from diverse pharmaceutical domains. Additionally, longitudinal studies could assess the long-term impacts of AI on the pharmaceutical industry's market dynamics and regulatory frameworks.

5. Conclusion

The emergence of AI and its amazing capabilities continually tries to lessen the difficulties that pharmaceutical businesses confront, resulting in an influence on both the medication manufacturing procedure and the product's total lifetime. This might account for the rise in industry start-ups. The rising cost of medications and treatments is only one of the many complicated issues the medical field is now experiencing. As a result, the community encompasses to make some very big adjustments in that field. Medications can be made more individually for each patient by using artificial intelligence (AI) to create customized drugs with the correct dosage, discharge variables, and other necessary elements. Employing the most recent technologies based on artificial intelligence will not only shorten the time it takes for products to reach the marketplace, nevertheless it can also boost product quality and broadly production process safety, as well as improve resource utilization and cost-effectiveness—all of which highlight the significance of automation.

References

- [1] Abed Hassan, A. and M. Bahloul, "Authenticated Diagnosing of COVID-19 using Deep Learning-based CT Image Encryption Approach," *Future Computing and Informatics Journal*, vol. 8, no. 2, Article 4, 2023.
- [2] Amira H. and Ahmed M., "The Applications of Digital Transformation towards Achieving Sustainable Development Goals: Practical Case Studies in Different Countries of the World," *Journal of Artificial Intelligence & Metaheuristics*, vol. 7, no. 1, pp. 53–66, 2024.
- [3] Amira H., "Deep Learning Techniques for Improving Breast Cancer Detection and Diagnosis," *International Journal of Advanced Networking and Applications*, vol. 13, no. 6, pp. 5197–5214, 2022.
- [4] Amira H., E. M. Shaaban, O. P. Jena, and A. A. Elngar, "A Comprehensive Survey on Breast Cancer Thermography Classification Using Deep Neural Network," in *Machine Learning and Deep Learning in Medical Data Analytics and Healthcare Applications*. CRC Press, Taylor & Francis Group, pp. 250–265, 2022.
- [5] Hassan A. and E. M. Shaaban, "Modeling Deep Neural Networks for Breast Cancer Thermography Classification: A Review Study," *International Journal of Advanced Networking and Applications*, vol. 13, no. 2, pp. 4939–4946, 2021.
- [6] Abed H. and M. Nasr, "Business Intelligence (BI) Significant Role in Electronic Health Records Cancer Surgeries Prediction: Case Study," *International Journal of Advanced Networking and Applications*, vol. 13, no. 6, pp. 5220–5228, 2022.
- [7] Amira Hassan Abed, "The Applications of Deep Learning Algorithms for Enhancing Big Data Processing Accuracy," *International Journal of Advanced Networking and Applications*, vol. 16, no. 2, pp. 6332–6341, 2024.
- [8] Ahmed M., Sayed M., Amel A., Marwa R., and Amira Hassan Abed, "Optimized Deep Learning for Potato Blight Detection Using the Waterwheel Plant Algorithm and Sine Cosine Algorithm," *Potato Research*, 2024. [Online]. Available: https://doi.org/10.1007/s11540-024-09735-y.
- [9] Amira Hassan Abed, "A Comprehensive Investigation for Quantifying and Assessing the Advantages of Blockchain Adoption in Banking Industry," in *2024 6th International Conference on Computing and Informatics (ICCI)*, pp. 322–333, 2024. [Online]. Available: https://doi.org/10.1109/ICCI61671.2024.10485028.
- [10] Rantanen J. and J. Khinast, "The future of pharmaceutical manufacturing sciences," *Journal of Pharmaceutical Sciences*, vol. 104, pp. 3612–3638, 2023.
- [11] Amira Hassan Abed, "Internet of Things (IoT) Technologies for Empowering E-Education in Digital Campuses of Smart Cities," *International Journal of Advanced Networking and Applications*, vol. 13, no. 2, pp. 4925–4930, 2021.
- [12] Álvarez-Machancoses, Ó., and J. L. Fernández-Martínez, "Using artificial intelligence methods to speed up drug discovery," *Expert Opinion on Drug Discovery*, vol. 14, no. 8, pp. 769–777, 2019.

- [13] Amira H., M. Nasr, and W. Saber, "The Future of Internet of Things for Anomalies Detection Using Thermography," *International Journal of Advanced Networking and Applications*, vol. 11, no. 3, pp. 4294–4300, 2019.
- [14] Hassan A., M. Nasr, L. A. Elhamid, and L. El-Fangary, "Applications of IoT in Smart Grids Using Demand Respond for Minimizing On-peak Load," *International Journal of Computer Science and Information Security*, vol. 19, no. 8, 2021.
- [15] Abed H. and M. Nasr, "Diabetes Disease Detection Through Data Mining Techniques," *International Journal of Advanced Networking and Applications*, vol. 11, no. 1, pp. 4142–4149, 2019.
- [16] Hassan A., M. Nasr, and L. A. Elhamid, "A Conceptual Framework for Minimizing Peak Load Electricity Using Internet of Things," *International Journal of Computer Science and Mobile Computing*, vol. 10, no. 8, pp. 60–71, 2021.
- [17] Marwa S. and Amira H., "The Success Implementation CRM Model for Examining the Critical Success Factors Using Statistical Data Mining Techniques," *International Journal of Computer Science and Information Security*, vol. 15, no. 1, pp. 455–475, 2017.
- [18] Abed H., "Recovery and Concurrency Challenging in Big Data and NoSQL Database Systems," *International Journal of Advanced Networking and Applications*, vol. 11, no. 4, pp. 4321–4329, 2020.
- [19] Naglaa S. and Hassan A., "Big Data with Column Oriented NoSQL Database to Overcome the Drawbacks of Relational Databases," *International Journal of Advanced Networking and Applications*, vol. 11, no. 5, pp. 4423–4428, 2020.
- [20] Amira Hassan Abed, M. Nasr, and B. S., "The Principle Internet of Things (IoT) Security Techniques Framework Based on Seven Levels IoT's Reference Model," in *Proceedings of Internet of Things—Applications and Future ITAF 2019*, Springer, LNNS, vol. 114.
- [21] Marwa S., Amira H. Abed, and Mahmoud A., "A Systematic Review for the Determination and Classification of the CRM Critical Success Factors Supporting with Their Metrics," *Future Computing and Informatics Journal*, vol. 3, pp. 398–416, 2018.
- [22] Tsigelny I. F., "Artificial Intelligence in Drug Combination Therapy," *Briefings in Bioinformatics*, vol. 20, pp. 1434–1448, 2024.
- [23] Dana D. et al., "Deep Learning in Drug Discovery and Medicine; Scratching the Surface," *Molecules*, vol. 23, pp. 2384–2398, 2022.
- [24] AlQuraishi M., "End-to-end Differentiable Learning of Protein Structure," *Cell Systems*, vol. 8, pp. 292–301, 2023.
- [25] Fogel D. B., "Factors Associated with Clinical Trials That Fail and Opportunities for Improving the Likelihood of Success: A Review," *Contemporary Clinical Trials Communications*, vol. 11, pp. 156–164, 2022.
- [26] Gams M. et al., "Integrating Artificial and Human Intelligence into Tablet Production Process," *AAPS PharmSciTech*, vol. 15, pp. 1447–1453, 2021.
- [27] Rantanen J. and J. Khinast, "The Future of Pharmaceutical Manufacturing Sciences," *Journal of Pharmaceutical Sciences*, vol. 104, pp. 3612–3638, 2019.
- [28] Aksu B. et al., "A Quality by Design Approach Using Artificial Intelligence Techniques to Control the Critical Quality Attributes of Ramipril Tablets," 2022.
- [29] Amira H. and Hany F., "The Evaluation of Electronic Human Resources (eHR) Management Based Internet of Things Using Machine Learning Techniques," *International Journal of Advanced Networking and Applications*, vol. 16, no. 3, pp. 6437–6452, 2024.
- [30] Elshewey A., Hassan Abed A., Doaa K., Amel Alhussan, Marwa Eid, and El-Sayed El-Kenawy, "Enhancing Heart Disease Classification Based on Greylag Goose Optimization Algorithm and Long Short-Term Memory," *Scientific Reports*, vol. 15, p. 1277, 2025. [Online]. Available: https://doi.org/10.1038/s41598-024-83592-0.
- [31] Amira H., Ahmed A., and Mohamed M., "Authentication in Cloud Computing Environments," *Multicriteria Algorithms with Applications*, vol. 5, pp. 59–67, 2024.
- [32] Hassan A., "The Techniques of Authentication in the Context of Cloud Computing," *International Journal of Advanced Networking and Applications*, vol. 16, no. 4, pp. 6515–6522, 2025.
- [33] Amira H., "Enhancing Big Data Processing Performance Using Cutting-Edge Deep Learning Algorithms," *Al-Ryada Journal for Computational Intelligence and Technology (ARJCIT)*, vol. 1, no. 1, pp. 39–53, 2024.